ERLANG

Kernel

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.
Kernel 7.3.1.7
December 12, 2022

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 12, 2022

1.1 Introduction

1 Kernel User's Guide

1.1 Introduction
1.1.1 Scope

TheKernd application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
e Codeloading

e Logging

e Globa name service

* Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Socket Usage
1.2.1 Introduction

The socket interface (module) is basically a"thin" layer on top of the OS socket interface. It is assumed that, unless
you have special needs, gen_[tcpludp|sctp] should be sufficent (when they become available).

Note that just because we have a documented and described option, it does not mean that the OS supports it. So its
recommended that the user reads the platform specific documentation for the option used.
Asynchronous calls

Some functions alow for an asynchronous call (accept/ 2, connect/ 3, recv/ 3,4, recvfrom 3, 4,
recvimsg/ 2, 3, 5, send/ 3, 4, sendnsg/ 3, 4 and sendt o/ 4, 5). This is achieved by setting the Ti neout
argument to nowai t . For instance, if calling ther ecv/ 3 function with Timeout set to nowai t (i.e.r ecv(Sock,
0, nowai t))whenthereisactually nothingtoread, itwill returnwith{ sel ect, Sel ect| nf o} (Sel ectlnfo
contains the SelectRef). When data eventually arrives a 'select message' will be sent to the caller:

{' $socket', socket(), select, SelectRef}
The caller can then make another call to the recv function and now expect data.

Note that all other users are locked out until the ‘current user' has called the function (recv in this case). So either
immediately call the function or cancel .

The user must also be prepared to receive an abort message:

Ericsson AB. All Rights Reserved.: Kernel | 1

1.2 Socket Usage

{' $socket', socket(), abort, Info}

If the operation is aborted for whatever reason (e.g. if the socket is closed "by someone else”). Thel nf o part contains
the abort reason (in this case that the socket has been closed | nfo = {Sel ect Ref, cl osed}).

The general form of the 'socket’ messageis:
{" $socket', Sock :: socket(), Tag :: aton(), Info :: tern()}
Where the format of | nf o isafunction of Tag:

Tag Info value type
select select_ref()
abort {select_ref(), Reason :: term()}

Table 2.1: socket message info value type

Thesel ect _ref () isthesameaswasreceivedinthe Sel ect | nf o.

1.2.2 Socket Registry

The socket registry is how we keep track of sockets. There are two functions that can be used for interaction:
socket : nunber _of/ 0 andsocket : whi ch_socket s/ 1.

In systems which create and delete many sockets dynamically, it (the socket registry) could become a bottleneck. For
such systems, there are a couple of ways to control the use of the socket registry.

Firstly, its possible to effect the global default value when building OTP from source with the two configure options:
--enable-esock-socket-registry (default) | --disable-esock-socket-registry

Second, its possible to effect the global default value by setting the environment variable
ESOCK_USE_SOCKET_REG STRY (boolean) before starting the erlang.

Third, its possible to alter the global default value in runtime by calling the functionuse_regi stry/ 1.
And finally, its possible to override the global default when creating a socket (with open/ 2 and open/ 4) by
providing the attribute use_r egi st ry (boolean) in the their Opt s argument (which effects that specific socket).

1.2.3 Socket Options

Optionsfor level ot p:

Other
Option Name Value Type Set Get Requirements and
comments
type = segpacket,
assoc_id integer() no yes protocol = sctp, isan

association

debug boolean() yes yes none

iow boolean() yes yes none

2 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

controlling_process | pid() yes yes none
‘default’ only valid
dsfsalij:tl 0 | for set. Thetuple
revbuf pos_Integ yes yes formisonly valid
{pos_integer(), \ :
0s ineteger()} for type 'stream' and
Pos_Ineteg protocol ‘tcp'.
revetribuf default | s s default only valid for
pos_integer() y y set
default | default only valid for
sndctrlbuf 0os integer() yes yes =t
fd integer() no yes none
the valueis set when
use_registr boolean() no es the socket is created,
-registty y by acall toopen/ 2
or open/ 4.
Table 2.2: option levels
Optionsfor level socket :
Other
Option Name Value Type Set Get Requirements and
comments
acceptconn boolean() no yes none
Before Linux 3.8,
this socket option
could be set, but
not get. Only works
bindtodevice string() yes yes for some socket
types (e.g.i net).
If empty valueis
set, the binding is
removed.
broadcast boolean() yes yes type = dgram
debu integer() es es may require admin
g €9 y y capability
domain domain() no s Not on FreeBSD (for
y instance)
dontroute boolean() yes yes none

Ericsson AB. All Rights Reserved.: Kernel | 3

1.2 Socket Usage

keepalive

boolean()

yes

yes

none

linger

abort | linger()

yes

yes

none

oobinline

boolean()

yes

yes

none

peek_off

integer()

yes

yes

domain = local
(unix). Currently
disabled dueto a
possibleinfinite
loop when calling
recv([peek]) the
second time.

priority

integer()

yes

yes

none

protocol

protocol ()

no

yes

Not on (some)
Darwin (for instance)

rcvbuf

non_neg_integer()

yes

yes

none

rcvliowat

non_neg_integer()

yes

yes

none

rcvtimeo

timeval()

yes

yes

Thisoptionis

not normally
supported (see why
below). OTP has

to be explicitly
built with the - -
enabl e- esock-
rcvsndti ne
configure option
for thisto be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefor, we do

not recommend
setting this option.
Instead, use the

Ti meout argument
to, for instance, the
recv/ 3 function.

reuseaddr

boolean()

yes

yes

none

reuseport

boolean()

yes

yes

domain = inet | inet6

4 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

sndbuf non_neg_integer() yes yes none

not changeable on

sndlowat non_neg_integer() | yes yes Linux

Thisoptionis

not normally
supported (see why
below). OTP has

to be explicitly
built with the - -
enabl e- esock-
rcvsndti ne
configure option
for thisto be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefor, we do

not recommend
setting this option.
Instead, use the

Ti meout argument
to, for instance, the
send/ 3 function.

sndtimeo timeval() yes yes

timestamp boolean() yes yes none

type type() no yes none

Table 2.3: socket options

Optionsfor level i p:

Option Name Value Type Set Get gg;iriremmts and
comments

add_membership ip_mreq() yes no none

add _source_membershiip_mreq_source() yes no none

block _source ip_mreq_source() yes no none

drop_membership ip_mreq() yes no none

drop_source_membershjp mreq_source() yes no none

Ericsson AB. All Rights Reserved.: Kernel | 5

1.2 Socket Usage

freebind boolean() yes yes none
hdrincl boolean() yes yes type = raw
minttl integer() yes yes type = raw
msfilter null |ip_msfilter() yes no none
mtu integer() no yes type = raw
mtu_discover ip_pmtudisc() yes yes none
multicast_all boolean() yes yes none
multicast_if any |ip4_address() |yes yes none
multicast_loop boolean() yes yes none
multicast_ttl uint8() yes yes none
nodefrag boolean() yes yes type = raw
pktinfo boolean() yes yes type = dgram
recvdstaddr boolean() yes yes type = dgram
recverr boolean() yes yes none
recvif boolean() yes yes type = dgram | raw
recvopts boolean() yes yes type =/= stream
recvorigdstaddr boolean() yes yes none
recvttl boolean() yes yes type =/= stream
retopts boolean() yes yes type =/= stream
router_alert integer() yes yes type = raw
sendsrcaddr boolean() yes yes none
some high-priority
tos ip_tos() yes yes levels may require
superuser capability
transparent boolean() yes yes requi res admin
capability
ttl integer() yes yes none

6 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

unblock source

ip_mreq_source()

yes

no

none

Table 2.4: ip options

Optionsfor level i pv6:

Option Name

Value Type

Get

Other
Requirements and
comments

addrform

inet

yes

no

allowed only for
IPv6 sockets that are
connected and bound
to av4-mapped-on-
v6 address

add_membership

ipv6_mreq()

yes

no

none

authhdr

boolean()

yes

yes

type = dgram | raw,
obsolete?

drop_membership

ipv6_mreq()

yes

no

none

dstopts

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

flowinfo

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

hoplimit

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
togethoplimt
as a control message
heeader. On others
(e.g. Linux),
recvhoplimt
isset in order to get
hoplimt.

hopopts

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

mtu

boolean()

yes

yes

Get: Only after the
socket has been
connected

Ericsson AB. All Rights Reserved.: Kernel | 7

1.2 Socket Usage

mtu_discover

ipv6_pmtudisc()

yes

yes

none

multicast_hops

default | uints()

yes

yes

none

multicast_if

integer()

yes

yes

type = dgram | raw

multicast_loop

boolean()

yes

yes

none

recverr

boolean()

yes

yes

none

recvhoplimit

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. Linux),
recvhoplimt
isset in order to get
hopl i mt

recvpktinfo | pktinfo

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
toget hopl i mit
as a control message
heeader. On others
(e.g. Linux),
recvhoplimnt
isset in order to get
hoplimt.

recvtclass

boolean()

yes

yes

type = dgram | raw.
On some platforms
isused to set (=true)
in order to get the

t cl ass control
message heeader.
On others, t cl ass
isset in order to get
t cl ass control
message heeader.

router_alert

integer()

yes

yes

type = raw

rthdr

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

tclass

boolean()

yes

8 | Ericsson AB. All Rights Reserved.: Kernel

yes

type = dgram |

raw. On some
platformsisused to
set (=true) in order
togetthet cl ass
control message

1.2 Socket Usage

heeader. On others,
recvtcl assis
set in order to get

t cl ass control

message heeader.
unicast_hops default | uint8() yes yes none
veonly boolean() yes no none
Table 2.5: ipv6 options
Optionsfor level t cp:
Other
Option Name Value Type Set Get Requirements and
comments
congestion string() yes yes none
max integer() s s Set not alowed on
=9 €9 y y all platforms.
nodelay boolean() yes yes none
Table 2.6: tcp options
Optionsfor level udp:
Other
Option Name Value Type Set Get Requirements and
comments
cork boolean() yes yes none
Table 2.7: udp options
Optionsfor level sct p:
Other
Option Name Value Type Set Get Requirements and
comments
associnfo sctp_assocparams() | yes yes none
autoclose non_neg_integer() yes yes none
disable fragments boolean() yes yes none

Ericsson AB. All Rights Reserved.: Kernel | 9

1.3 Logging

events sctp_event_subscribe() yes no none
initmsg sctp_initmsg() yes yes none
maxseg non_neg_integer() yes yes none
nodelay boolean() yes yes none
rtoinfo sctp_rtoinfo() yes yes none

Table 2.8: sctp options

1.3 Logging

Erlang/OTP 21.0 providesastandard API for logging through Logger , whichispart of the Kernel application. Logger
consists of the API for issuing log events, and a customizable backend where log handlers, filters and formatters can
be plugged in.

By default, the Kernel applicationinstallsonelog handler at system start. Thishandler isnamed def aul t . It receives
and processes standard log events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default written to the terminal.

You can also configure the system so that the default handler prints log events to a single file, or to a set of wrap
logsviadi sk_I og.

By configuration, you can also modify or disable the default handler, replace it by a custom handler, and install
additional handlers.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger APl and
functionality in patches following this release. These changes might or might not be backwards compatible with
theinitial version.

1.3.1 Overview
A log event consists of alog level, the message to be logged, and metadata.

The Logger backend forwards log events from the AP, first through a set of primary filters, then through a set of
secondary filters attached to each log handler. The secondary filters are in the following named handler filters.

Each filter set consists of alog level check, followed by zero or morefilter functions.

The following figure shows a conceptual overview of Logger. The figure shows two log handlers, but any number
of handlers can be installed.

10 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

]
N

Module Level

ar —
Global Level ~. -

b r h ‘
[) o Config
Global Filters A N
N
, s .
Handler v Handler L/
Level Level
Handler Handler
Filters Filters
- g N 4 e Log event flow
- = p Update configuration
Handler Handler
Callback Callback — - — p Look up configuration

Figure 3.1: Conceptual Overview

Log levelsare expressed as atoms. Internally in Logger, the atoms are mapped to integer values, and alog event passes
the log level check if the integer value of itslog level isless than or equal to the currently configured log level. That
is, the check passesif the event is equally or more severe than the configured level. See section Log Level for alisting
and description of all log levels.

The primary log level can be overridden by alog level configured per module. Thisis to, for instance, allow more
verbose logging from a specific part of the system.

Filter functions can be used for more sophisticated filtering than the log level check provides. A filter function can
stop or pass alog event, based on any of the event's contents. It can also modify all parts of the log event. See section
Filters for more details.

If alog event passesthrough all primary filtersand all handler filtersfor aspecific handler, L ogger forwardsthe event to
thehandler callback. The handler formats and printsthe event to its destination. See section Handlersfor more details.

Ericsson AB. All Rights Reserved.: Kernel | 11

1.3 Logging

Everything up to and including the call to the handler callbacks is executed on the client process, that is, the process
where the log event was issued. It is up to the handler implementation if other processes are involved or not.

The handlers are called in sequence, and the order is not defined.

1.3.2 Logger API

The API for logging consists of a set of macros, and a set of functionson theform | ogger : Level / 1, 2, 3, which
aredl shortcutsfor | ogger : | og(Level , Argl[, Arg2[, Arg3]]).

The macros are defined inl ogger . hr | , which isincluded in amodule with the directive
-include lib("kernel/include/logger.hrl").

The difference between using the macros and the exported functions is that macros add location (originator)
information to the metadata, and performslazy evaluation by wrapping the logger call in acase statement, soitisonly
evaluated if the log level of the event passes the primary log level check.

Log Level

Thelog level indicatesthe severity of aevent. In accordance with the Syslog protocol, RFC 5424, eight log levels can
be specified. The following tablelists al possible log levels by name (atom), integer value, and description:

Leve I nteger Description

emergency 0 system is unusable

alert 1 action must be taken immediately
critical 2 critical conditions

error 3 error conditions

warning 4 warning conditions

notice 5 normal but significant conditions
info 6 informational messages

debug 7 debug-level messages

Table 3.1: Log Levels

Notice that theinteger valueis only used internally in Logger. In the API, you must always use the atom. To compare
the severity of two log levels, usel ogger : conpare_| evel s/ 2.

Log Message

The log message contains the information to be logged. The message can consist of a format string and arguments
(given as two separate parameters in the Logger API), astring or areport. The latter, which is either a map or akey-
value list, can be accompanied by areport callback specified in the log event's metadata. The report callback is a
convenience function that the formatter can use to convert the report to a format string and arguments, or directly
to a string. The formatter can also use its own conversion function, if no callback is provided, or if a customized
formatting is desired.

12 | Ericsson AB. All Rights Reserved.: Kernel

href

1.3 Logging

The report callback must be a fun with one or two arguments. If it takes one argument, this is the report itself, and
the fun returns aformat string and arguments:

fun((l ogger:report()) -> {io:format(),[term()]1})

If it takes two arguments, the first is the report, and the second is a map containing extra data that allows direct
coversion to a string:

fun((l ogger:report(),l ogger:report_cb_config()) -> unicode:chardata())

The fun must obey the dept h and chars_| i m t parameters provided in the second argument, as the formatter
cannot do anything useful of these parameters with the returned string. The extra data also contains a field named
si ngl e_I i ne, indicating if the printed log message may contain line breaks or not. This variant is used when the
formatting of the report depends on the size or single line parameters.

Example, format string and arguments:

logger:error("The file does not exist: ~ts",[Filename])
Example, string:

logger:notice("Something strange happened!")
Example, report, and metadata with report callback:

logger:debug(#{got => connection request, id => Id, state => State},
#{report cb => fun(R) -> {"~p",[R]} end})

The log message can also be provided through afun for lazy evaluation. The funis only evaluated if the primary log
level check passes, and is therefore recommended if it is expensive to generate the message. The lazy fun must return
astring, areport, or atuple with format string and arguments.

Metadata

M etadata contains additional data associated with alog message. Logger inserts some metadata fields by default, and
the client can add custom metadata in two different ways:

Set process metadata

Process metadata is set and updated with | ogger:set process_netadata/l and
| ogger: updat e_process_net adat a/ 1, respectively. This metadata applies to the process on which
these calls are made, and Logger adds the metadata to all log events issued on that process.

Add metadata to a specific log event

Metadata associated with one specific log event is given as the last parameter to the log macro or Logger API
function when the event isissued. For example:

?7LOG_ERROR("Connection closed",#{context => server})

See the description of thel ogger : net adat a() typefor information about which default keys Logger inserts, and
how the different metadata maps are merged.

1.3.3 Filters

Filters can be primary, or attached to a specific handler. Logger calls the primary filters first, and if they all pass, it
calls the handler filters for each handler. Logger calls the handler callback only if all filters attached to the handler
in question also pass.

A filter isdefined as:

Ericsson AB. All Rights Reserved.: Kernel | 13

1.3 Logging

{FilterFun, Extra}

whereFi | t er Fun isafunction of arity 2, and Ext r a isany term. When applying thefilter, Logger callsthefunction
with the log event as the first argument, and the value of Ext r a as the second argument. Seel ogger: filter()
for type definitions.

The filter function can return st op, i gnor e or the (possibly modified) log event.

If st op isreturned, the log event isimmediately discarded. If the filter is primary, no handler filters or callbacks are
caled. If itisahandler filter, the corresponding handler callback is not called, but the log event is forwarded to filters
attached to the next handler, if any.

If the log event is returned, the next filter function is called with the returned value as the first argument. That is, if
afilter function modifies the log event, the next filter function receives the modified event. The value returned from
the last filter function is the value that the handler callback receives.

If the filter function returnsi gnor e, it means that it did not recognize the log event, and thus leaves to other filters
to decide the event's destiny.

The configuration option f i | t er _def aul t specifies the behaviour if al filter functions returni gnor e, or if no
filtersexist.fi | t er _def aul t isby default settol og, meaningthat if all existing filtersignore alog event, Logger
forwards the event to the handler callback. If fi | t er _def aul t issettost op, Logger discards such events.

Primary filters ae added with logger:add primary filter/2 and removed with
| ogger:remove_primary filter/ 1. They can aso be added at system start via the Kernel configuration
parameter | ogger .

Handler filters are added with | ogger:add _handler filter/3 and removed with
| ogger:renmove_handl er _filter/2. They canaso be specified directly in the configuration when adding a
handler with | ogger : add_handl er/ 3 or viathe Kernel configuration parameter | ogger .

To see which filters are currently installed in the system, use |ogger:get_config/0, or
| ogger:get_primary_config/ 0 and| ogger: get _handl er _confi g/ 1. Filters are listed in the order
they are applied, that is, thefirst filter in the list is applied first, and so on.

For convenience, the following built-in filters exist:
| ogger _filters: domain/2
Provides away of filtering log events based on adonmi n field in Met adat a.
| ogger filters:level/2
Provides away of filtering log events based on the log level.
| ogger _filters: progress/2
Stops or alows progress reports from super vi sor and appl i cati on_control |l er.
| ogger _filters:renote_gl/2

Stops or alows log events originating from a process that has its group leader on aremote node.
1.3.4 Handlers
A handler is defined as a module exporting at least the following callback function:
log(LogEvent, Config) -> void()

This function is called when alog event has passed through all primary filters, and all handler filters attached to the
handler in question. The function call is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.

14 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Logger alows adding multiple instances of a handler callback. That is, if a callback module implementation allows
it, you can add multiple handler instances using the same callback module. The different instances are identified by
unique handler identities.

In addition to the mandatory callback function | og/ 2, a handler module can export the optional callback
functionsaddi ng_handl er/ 1,changi ng_confi g/ 3,filter_config/ 1,andrenovi ng_handl er/ 1.
See section Handler Callback Functions in the logger(3) manual page for more information about these function.

The following built-in handlers exist:
| ogger _std_h

Thisisthe default handler used by OTP. Multipleinstances can be started, and each instance will writelog events
to agiven destination, terminal or file.

| ogger _di sk_l og_h
This handler behaves much likel ogger _st d_h, except it usesdi sk_| og asits destination.
error_| ogger

This handler is provided for backwards compatibility only. It is not started by default, but
will be automaticaly started the first time an error_| ogger event handler is added with
error_| ogger:add_report_handl er/1, 2.

Theold error _| ogger event handlersin STDLIB and SASL still exist, but they are not added by Erlang/
OTP 21.0 or later.

1.3.5 Formatters

A formatter can be used by the handler implementation to do the final formatting of alog event, before printing to
the handler's destination. The handler callback receives the formatter information as part of the handler configuration,
which is passed as the second argument to HVbdul e: | og/ 2.

Theformatter information consist of aformatter module, FMbdul e and its configuration, FConf i g. FModul e must
export the following function, which can be called by the handler:

format(LogEvent,FConfig)
-> FormattedLogEntry

The formatter information for a handler is set as a part of its configuration when the handler is added.
It can also be changed during runtime with | ogger: set _handl er _confi g(Handl erld, formatter,
{ FModul e, FConfi g}) , Wwhich overwrites the current formatter information, or with
| ogger: update_formatter_confi g/ 2, 3, which only modifies the formatter configuration.

If the formatter module exports the optional callback function check confi g(FConfi g), Logger cals this
function when the formatter information is set or modified, to verify the validity of the formatter configuration.

If no formatter information is specified for a handler, Logger uses | ogger formatter as default. See the
| ogger _formatter(3) manua page for moreinformation about this module.
1.3.6 Configuration

At system start, Logger is configured through Kernel configuration parameters. The parameters that apply to Logger
are described in section Kernel Configuration Parameters. Examples are found in section Configuration Examples.

During runtime, Logger configuration is changed via API functions. See section Configuration API Functionsin the
| ogger (3) manual page.

Primary Logger Configuration
Logger API functions that apply to the primary Logger configuration are:

Ericsson AB. All Rights Reserved.: Kernel | 15

1.3 Logging

get _primary_config/0
set _primary _config/1l,2
update_primary_config/1
add_primary_filter/2
renove_primary filter/1

The primary Logger configuration is a map with the following keys:

| evel = logger:level() | all | none

Specifiesthe primary log level, that is, log event that are equally or more severe than thislevel, are forwarded to
the primary filters. Less severe log events are immediately discarded.

See section Log Level for alisting and description of possible log levels.

Theinitial value of thisoptionisset by the Kernel configuration parameter | ogger _| evel . Itischanged during
runtimewith | ogger: set _primary_config(l evel, Level).

Defaultstonot i ce.

filters = [{Filterld,Filter}]

Specifies the primary filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

The initia value of this option is set by the Kernel configuration parameter | ogger. During
runtime, primary filters are added and removed with | ogger:add primary filter/2 and
| ogger:renmove_primary filter/1,respectively.

See section Filters for more detailed information.
Defaultsto[] .

filter_default =1log | stop

Specifies what happensto alog event if al filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.

Defaultsto| og.

Handler Configuration
Logger API functions that apply to handler configuration are:

get _handl er_config/0,1

set _handl er _config/2,3
updat e_handl er _config/ 2,3
add_handl er _filter/3
renove_handler filter/2
update formatter_config/ 2,3

The configuration for a handler is a map with the following keys:

id = logger:handler _id()

Automatically inserted by Logger. The valueisthe same asthe Handl er | d specified when adding the handler,
and it cannot be changed.

16 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

nmodul e = nodul e()

Automatically inserted by Logger. The value is the same asthe Mbdul e specified when adding the handler, and
it cannot be changed.

|l evel = logger:level() | all | none

Specifies the log level for the handler, that is, log events that are equally or more severe than this level, are
forwarded to the handler filters for this handler.

See section Log Leve for alisting and description of possible log levels.

The log level is specified when adding the handler, or changed during runtime with, for instance,
| ogger: set _handl er _config(Handl erld, | evel, Level).

Defaultstoal | .

filters = [{Filterld,Filter}]
Specifies the handler filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

Handler filters are specified when adding the handler, or added or removed during runtime with
| ogger: add_handl er _filter/3andl ogger:renmove_handl er filter/ 2, respectively.

See Filters for more detailed information.
Defaultsto[] .
filter _default =1log | stop
Specifies what happensto alog event if all filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultsto| og.
formatter = {Formatter Modul e, Fornatt er Confi g}
Specifies aformatter that the handler can use for converting the log event term to a printable string.

e FormatterMdul e = nodul e()
e« FormatterConfig = | ogger:formatter_config()

The formatter information is specified when adding the handler. The formatter configuration can be changed
during runtime with | ogger : update_formatter _confi g/ 2, 3, or the complete formatter information
can be overwritten with, for instance, | ogger : set _handl er _confi g/ 3.

See section Formatters for more detailed information.

Defaultsto {| ogger _formatter, Defaul t Formatter Confi g}. Seethel ogger fornatter(3)
manual page for information about this formatter and its default configuration.

config = term()
Handler specific configuration, that is, configuration data related to a specific handler implementation.

The configuration for the built-in handlers is described in the |ogger_std _h(3) and
| ogger _di sk_| og_h(3) manual pages.

Noticethat| evel andfi |t er s areobeyed by Logger itself before forwarding the log eventsto each handler, while
format t er and all handler specific options are |eft to the handler implementation.

Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:

Ericsson AB. All Rights Reserved.: Kernel | 17

1.3 Logging

| ogger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _| evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

With this parameter, you can modify or disable the default handler, add custom handlers and primary logger
filters, set log levels per module, and modify the proxy configuration.

Conf i g isany (zero or more) of the following:

{handl er, default, undefined}
Disables the default handler. This alows another application to add its own default handler.
Only one entry of thistypeis allowed.

{handl er, Handl erld, Mdul e, Handl er Confi g}
If Handl er | d isdef aul t, then this entry modifies the default handler, equivalent to calling

logger:remove handler(default)

followed by

logger:add handler(default, Module, HandlerConfig)

For all other values of Handl er | d, this entry adds a new handler, equivalent to calling

logger:add handler(HandlerId, Module, HandlerConfig)

Multiple entries of thistype are allowed.
{filters, FilterDefault, [Filter]}
Adds the specified primary filters.

 FilterDefault = log | stop
e Filter = {Filterld, {FilterFun, FilterConfig}}

Equivalent to calling

logger:add primary filter(FilterId, {FilterFun, FilterConfig})

foreach Fil ter.
Fi | t er Def aul t specifiesthe behaviour if al primary filtersreturni gnor e, see section Filters.
Only one entry of thistypeisallowed.

{modul e_| evel , Level, [Mbdule]}

Sets module log level for the given modules. Equivalent to calling

logger:set module level(Module, Level)

for each Modul e.
Multiple entries of thistype are allowed.

18 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

{proxy, ProxyConfi g}
Sets the proxy configuration, equivalent to calling

logger:set proxy config(ProxyConfig)

Only one entry of thistypeisallowed.
See section Configuration Examples for examples using thel ogger parameter for system configuration.
| ogger | evel = Level
Specifies the primary log level. Seethe ker nel (6) manual page for more information about this parameter.
| ogger _sasl _conpatible = true | false

Specifies Logger's compatibility with SASL Error Logging. See the ker nel (6) manua page for more
information about this parameter.

Configuration Examples

The value of the Kernel configuration parameter | ogger isalist of tuples. It is possible to write the term on the
command line when starting an erlang node, but asthe term grows, a better approach isto use the system configuration
file. Seethe conf i g(4) manua page for more information about thisfile.

Each of the following examples shows a simple system configuration file that configures Logger according to the
description.

Modify the default handler to print to afileinstead of st andar d_i o:

[{kernel,
[{logger,
[{handler, default, logger std h, % {handler, HandlerId, Module,
#{config => #{file => "log/erlang.log"}}} % Config}
131} 1.

Modify the default handler to print each log event asasingleline:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter, #{single line => true}}}}
13131,

Modify the default handler to print the pid of the logging process for each log event:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter,
#{template => [time," ",pid," ",msg,"\n"1}}}}
131} 1.

Modify the default handler to only print errors and more severelog eventsto "log/erlang.log", and add another handler
to print all log eventsto "log/debug.log”.

Ericsson AB. All Rights Reserved.: Kernel | 19

1.3 Logging

[{kernel,
[{logger,
[{handler, default, logger std h,
#{level => error,
config => #{file => "log/erlang.log"}}},
{handler, info, logger std h,
#{level => debug,
config => #{file => "log/debug.log"}}}
13131,

1.3.7 Backwards Compatibility with error_logger
Logger provides backwards compatibility with er r or _| ogger inthe following ways:
API for Logging
Theerror _| ogger API till exists, but should only be used by legacy code. It will beremovedin alater release.

Callstoerror_l ogger:error_report/1,2,error_|l ogger:error_nsg/ 1, 2, and corresponding
functions for warning and info messages, ae al forwarded to Logger as «cals to
| ogger: | og(Level, Report, Met adat a) .

Level = error | warning | infoandistakenfromthefunctionname. Report containstheactual log
message, and Met adat a contains additional information which can be used for creating backwards compatible
eventsfor legacy er r or _| ogger event handlers, see section Legacy Event Handlers.

Output Format

Togetlog eventsonthesameformat asproducedbyerror | ogger _tty handerror | ogger file_h,
usethedefault formatter, | ogger _f or mat t er , with configuration parameter | egacy header settotr ue.
Thisisthe default configuration of the def aul t handler started by Kernel.

Default Format of Log Events from OTP

By default, all log events originating from within OTP, except the former so called "SASL reports’, look the
same as before.

SASL Reports
By SASL reports we mean supervisor reports, crash reports and progress reports.

Prior to Erlang/OTP 21.0, these reports were only logged when the SASL application was running, and they were
printed trough SASL'sown event handlerssasl _report _tty handsasl _report file_h.

The destination of these log events was configured by SASL configuration parameters.
Due to the specific event handlers, the output format slightly differed from other log events.
Asof Erlang/OTP 21.0, the concept of SASL reportsisremoved, meaning that the default behaviour isasfollows:

e Supervisor reports, crash reports, and progress reports are no longer connected to the SASL application.

e Supervisor reports and crash reports areissued aser r or level log events, and are logged through the
default handler started by Kernel.

* Progressreportsareissued asi nf o level log events, and since the default primary log level isnot i ce,
these are not logged by default. To enable printing of progress reports, set the primary log level toi nf o.

e Theoutput format isthe samefor all log events.

If the old behaviour is preferred, the Kernel configuration parameter | ogger _sasl _conpat i bl e can be set
totrue. The SASL configuration parameters can then be used as before, and the SASL reports will only be
printed if the SASL application is running, through a second log handler named sasl .

All SASL reports have ametadatafield domai n whichissetto[ot p, sasl] . Thisfield can be used by filters
to stop or alow the log events.

20 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

See section SASL User's Guide for more information about the old SASL error logging functionality.
Legacy Event Handlers
To use event handlers written for er r or _| ogger , just add your event handler with

error_logger:add report handler/1,2.

Thisautomatically startsthe error logger event manager, and addser r or _| ogger asahandler to Logger, with
the following configuration:

#{level => info,
filter default => log,
filters => []}.

This handler ignores events that do not originate from the er r or _| ogger AP, or from within OTP. This
meansthat if your code usesthe Logger API for logging, then your log eventswill be discarded by thishandler.

The handler is not overload protected.

1.3.8 Error Handling

Logger does, to a certain extent, check its input data before forwarding a log event to filters and handlers. It does,
however, not evaluate report callbacks, or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of alog event, making sure that it does not crash due
to bad input data or faulty callbacks.

If afilter or handler still crashes, Logger will remove thefilter or handler in question from the configuration, and print
ashort error message to the terminal. A debug event containing the crash reason and other detailsis also issued.

See section Log Message for more information about report callbacks and valid forms of log messages.

1.3.9 Example: Add a handler to log info events to file

When starting an Erlang node, the default behaviour isthat all log eventsonlevel not i ce or more severe, arelogged
to the terminal viathe default handler. To also log info events, you can either change the primary log level to i nf o:

1> logger:set primary config(level, info).
ok

or set the level for one or afew modules only:
2> logger:set module level(mymodule, info).
ok

Thisalowsinfo events to pass through to the default handler, and be printed to the terminal aswell. If there are many
info events, it can be useful to print theseto afile instead.

First, set the log level of the default handler to not i ce, preventing it from printing info eventsto the terminal:

3> logger:set handler config(default, level, notice).
ok

Then, add a new handler which prints to file. You can use the handler module | ogger _std_h, and configure it
tologtofile:

Ericsson AB. All Rights Reserved.: Kernel | 21

1.3 Logging

4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"}, level => info}

5> logger:add handler(myhandler, logger std h, Config).

ok

Sincefi | t er _def aul t defaultstol og, thishandler now receivesall log events. If you want info eventsonly inthe
file, you must add afilter to stop all non-info events. The built-infilter | ogger filters: | evel /2 candothis.

6> logger:add handler filter(myhandler, stop non info,
{fun logger filters:level/2, {stop, neq, info}}).
ok

See section Filters for more information about the filtersand thef i | t er _def aul t configuration parameter.

1.3.10 Example: Implement a handler

Section Handler Callback Functions in the logger(3) manua page describes the callback functions that can be
implemented for a Logger handler.

A handler callback module must export:

* log(Log, Config)

It can optionally also export some, or all, of the following:

e addi ng_handl er (Confi g)

* renovi ng_handl er (Confi g)

e« changi ng_config(Set OrUpdate, O dConfig, NewConfig)
« filter_config(Config)

When a handler is added, by for example a call to | ogger: add_handl er (1d, Hwdule, Config),
Logger first calls Hvbdul e: addi ng_handl er (Confi g) . If this function returns { ok, Confi g1}, Logger
writes Conf i g1 to the configuration database, and the | ogger : add_handl er/ 3 call returns. After this, the
handler isinstalled and must be ready to receive log events as callsto Hvbdul e: | og/ 2.

A handler can be removed by caling |ogger:renove_handler(ld). Logger cals
HModul e: renovi ng_handl er (Confi g), and removes the handler's configuration from the configuration
database.

When | ogger: set _handl er _config/ 2,3 or | ogger:update_handl er _config/ 2,3 is caled,
Logger calls HVbdul e: changi ng_confi g(Set Or Update, O dConfi g, NewConfi g). If thisfunction
returns { ok, NewConf i g1}, Logger writes NewConf i g1 to the configuration database.

When | ogger:get _config/0 or |ogger:get _handler _config/0,1 is caled, Logger cdls
HModul e: filter _confi g(Confi g) . Thisfunction must return the handler configuration where internal data
isremoved.

A simple handler that prints to the terminal can be implemented as follows:

-module(myhandlerl).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
io:put chars(FModule:format(LogEvent, FConfig)).

Notice that the above handler does not have any overload protection, and all log events are printed directly from the
client process.

22 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

For information and examples of overload protection, please refer to section Protecting the Handler from Overload,
and the implementation of | ogger _std_h and| ogger _di sk_| og_h.

Thefollowing is asimpler example of a handler which logs to afile through one single process:

-module(myhandler2).
-export([adding handler/1, removing handler/1, log/2]).
-export([init/1, handle call/3, handle cast/2, terminate/2]).

adding handler(Config) ->
MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
{ok, Pid} = gen server:start(?MODULE, MyConfig, []),
{ok, Config#{config => MyConfig#{pid => Pid}}}.

removing handler(#{config := #{pid := Pid}}) ->
gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
{ok, Fd} file:open(File, [append, {encoding, utf8}1),
{ok, #{file => File, fd => Fd}}.

handle call(, , State) ->
{reply, {error, bad request}, State}.

handle cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
do log(Fd, LogEvent, Config),
{noreply, State}.

terminate(Reason, #{fd := Fd}) ->
= file:close(Fd),
ok.

do log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->
String = FModule:format(LogEvent, FConfig),
io:put chars(Fd, String).

1.3.11 Protecting the Handler from Overload

The default handlers, | ogger _std_h and | ogger _di sk_I og_h, feature an overload protection mechanism,
which makes it possible for the handlers to survive, and stay responsive, during periods of high load (when huge
numbers of incoming log requests must be handled). The mechanism works as follows:

Message Queue Length

The handler process keeps track of the length of its message queue and takes some form of action when the current
length exceeds a configurable threshold. The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events. The memory use of the handler
must never grow larger and larger, since that will eventually cause the handler to crash. These three thresholds, with
associated actions, exist:

sync_node_gl en

Aslong as the length of the message queue is lower than this value, all log events are handled asynchronously.
Thismeansthat the client process sending the log event, by calling alog function in the Logger API, does not wait
for aresponse from the handler but continues executing immediately after the event is sent. It is not affected by
thetimeit takes the handler to print the event to the log device. If the message queue grows larger than thisvalue,
the handler starts handling log events synchronously instead, meaning that the client process sending the event
must wait for aresponse. When the handler reduces the message queue to alevel below thesync_node_ gl en

Ericsson AB. All Rights Reserved.: Kernel | 23

1.3 Logging

threshold, asynchronous operation is resumed. The switch from asynchronous to synchronous mode can slow
down the logging tempo of one, or afew, busy senders, but cannot protect the handler sufficiently in a situation
of many busy concurrent senders.

Defaultsto 10 messages.
drop_node_gl en

When the message queue grows larger than this threshold, the handler switches to a mode in which it drops all
new events that senders want to log. Dropping an event in this mode means that the call to the log function never
results in a message being sent to the handler, but the function returns without taking any action. The handler
keeps logging the events that are already in its message queue, and when the length of the message queue is
reduced to a level below the threshold, synchronous or asynchronous mode is resumed. Notice that when the
handler activates or deactivates drop mode, information about it is printed in the log.

Defaultsto 200 messages.
flush_qgl en

If the length of the message queue grows larger than this threshold, a flush (delete) operation takes place. To
flush events, the handler discards the messagesin the message queue by receiving them in aloop without logging.
Client processeswaiting for aresponse from asynchronouslog regquest receive areply from the handler indicating
that the request is dropped. The handler process increases its priority during the flush loop to make sure that no
new events are received during the operation. Notice that after the flush operation is performed, the handler prints
information in the log about how many events have been deleted.

Defaultsto 1000 messages.
For the overload protection algorithm to work properly, it is required that:
sync_node_gl en =< drop_node_qgl en =< flush_gl en
and that:
drop_node_qglen > 1
To disable certain modes, do the following:

 Ifsync_node_qgl enissetto 0, all log events are handled synchronously. That is, asynchronous logging is
disabled.

 Ifsync_node_ gl en issettothesamevaueasdr op_node_ql en, synchronous modeisdisabled. That is,
the handler always runsin asynchronous mode, unless dropping or flushing isinvoked.

e Ifdrop_node_qgl enissettothesamevaueasf| ush_gl en, drop modeis disabled and can never occur.

During high load scenarios, the length of the handler message queue rarely grows in a linear and predictable way.
Instead, whenever the handler processis scheduled in, it can have an almost arbitrary number of messages waiting in
the message queue. It isfor this reason that the overload protection mechanism is focused on acting quickly, and quite
drastically, such asimmediately dropping or flushing messages, when alarge queue length is detected.

The values of the previoudly listed thresholds can be specified by the user. This way, a handler can be configured
to, for example, not drop or flush messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under such circumstances. Another example
of user configuration is when, for performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still acceptable, since it does not affect the
performance of the client processes sending the log events.

A configuration example:

24 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

logger:add handler(my standard h, logger std h,
#{config => #{file => "./system info.log",
sync_mode qlen => 100,
drop_mode qlen => 1000,
flush_qlen => 2000}}).
Controlling Bursts of Log Requests

Large bursts of log events - many events received by the handler under a short period of time - can potentially cause
problems, such as:

* Logfilesgrow very large, very quickly.
e Circular logs wrap too quickly so that important datais overwritten.
* Write buffers grow large, which slows down file sync operations.

For this reason, both built-in handlers offer the possibility to specify the maximum number of events to be handled
within acertain timeframe. With thisburst control feature enabled, the handler can avoid choking thelog with massive
amounts of printouts. The configuration parameters are:

burst limt_enable
Vauet r ue enables burst control and f al se disablesit.
Defaultstot r ue.

burst _|imt_max_count

This is the maximum number of eventsto handle withinaburst | imt_w ndow ti nme timeframe. After
the limit is reached, successive events are dropped until the end of the time frame.

Defaultsto 500 events.

burst _limt_wi ndow tinme
See the previous description of bur st _|imt_nmax_count.
Defaultsto 1000 milliseconds.

A configuration example:

logger:add handler(my disk log h, logger disk log h,
#{config => #{file => "./my disk log",
burst _limit enable => true,
burst_limit max_count => 20,
burst_limit window time => 500}}).
Terminating an Overloaded Handler

It is possible that a handler, even if it can successfully manage peaks of high load without crashing, can build up a
large message queue, or use alarge amount of memory. The overload protection mechanism includes an automatic
termination and restart feature for the purpose of guaranteeing that a handler does not grow out of bounds. The feature
is configured with the following parameters:

overload kill _enable
Valuet r ue enablesthe feature and f al se disablesit.
Defaultstof al se.

overload kill _qglen

This is the maximum allowed queue length. If the message queue grows larger than this, the handler processis
terminated.

Defaultsto 20000 messages.

Ericsson AB. All Rights Reserved.: Kernel | 25

1.3 Logging

overload_kill_nem size

This is the maximum memory size that the handler process is alowed to use. If the handler grows larger than
this, the process is terminated.

Defaultsto 3000000 bytes.
overload kill restart_after

If the handler isterminated, it restarts automatically after adelay specified in milliseconds. Thevaluei nfinity
prevents restarts.

Defaultsto 5000 milliseconds.

If the handler process is terminated because of overload, it prints information about it in the log. It aso prints
information about when a restart has taken place, and the handler is back in action.

The sizes of the log events affect the memory needs of the handler. For information about how to limit the size of
log events, seethel ogger _f ormat t er (3) manual page.

1.3.12 Logger Proxy

The Logger proxy is an Erlang process which is part of the Kernel application's supervision tree. During startup, the
proxy process registers itself asthe syst em | ogger , meaning that log events produced by the emulator are sent
to this process.

When alog event isissued on aprocess which hasitsgroup leader on aremote node, L ogger automatically forwardsthe
log event to the group leader's node. To achievethis, it first sendsthelog event as an Erlang message from the original
client processto the proxy on thelocal node, and the proxy in turn forwards the event to the proxy on the remote node.

When receiving alog event, either from the emulator or from a remote node, the proxy calls the Logger APl to log
the event.

The proxy processisoverload protected in the same way as described in section Protecting the Handler from Overload,
but with the following default values:

#{sync_mode_qlen => 500,
drop_mode glen => 1000,
flush_qglen => 5000,
burst limit enable => false,
overload kill enable => false}

For log events from the emulator, synchronous message passing mode is hot applicable, since all messages are passed
asynchronously by the emulator. Drop mode is achieved by setting the syst em | ogger to undef i ned, forcing
the emulator to drop events until it is set back to the proxy pid again.

The proxy uses er | ang: send_nosuspend/ 2 when sending log events to a remote node. If the message could
not be sent without suspending the sender, it is dropped. Thisisto avoid blocking the proxy process.

1.3.13 See Also

di sk_1 og(3), erlang(3), error_|logger(3), | ogger (3), | ogger di sk _|og h(3),
| ogger filters(3),logger formatter(3),logger_std h(3),sasl (6)

26 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

1.4 Logging Cookbook

Using and especially configuring Logger can be difficult at times as there are many different options that can be
changed and often more than one way to achieve the same result. This User's Guide tries to help by giving many
different examples of how you can use logger.

For more examples of practical use-cases of using Logger, Fred Hebert's blog post Erlang/OTP 21's new logger is
agreat starting point.

If you find that some common Logger usage is missing from this guide, please open a pull request on github with
the suggested addition

1.4.1 Get Logger information
Print the primary Logger configurations.

1> logger:i(primary).
Primary configuration:
Level: notice
Filter Default: log
Filters:
(none)

Itisalso possible to fetch the configuration using | ogger : get _pri mary_confi g().

See also

* logger:i()
« Configuration in the Logging User's Guide

Ericsson AB. All Rights Reserved.: Kernel | 27

href

1.4 Logging Cookbook

Print the configuration of all handlers.

2> logger:i(handlers).
Handler configuration:
Id: default
Module: logger std h
Level: all
Formatter:
Module: logger formatter
Config:
legacy header: true
single line: false
Filter Default: stop
Filters:
Id: remote gl
Fun: fun logger filters:remote gl/2
Arg: stop
Id: domain
Fun: fun logger filters:domain/2
Arg: {log,super, [otp,sasl]}
Id: no domain
Fun: fun logger filters:domain/2
Arg: {log,undefined,[]}
Handler Config:
burst limit enable: true
burst limit max count: 500
burst limit window time: 1000
drop _mode qlen: 200
filesync repeat interval: no_ repeat
flush glen: 1000
overload kill enable: false
overload kill mem size: 3000000
overload kill glen: 20000
overload kill restart after: 5000
sync_mode qlen: 10
type: standard io

You can also print the configuration of a specific handler using
| ogger:i (Handl er Nane), or fetch the configuration using | ogger: get handl er _config(), or
| ogger: get _handl er _confi g(Handl er Nane) for aspecific handler.

See also

« logger:i()
« Configurationin the Logging User's Guide

1.4.2 Configure the Logger

Where did my progress reports go?

In OTP-21 the default primary log level isnot i ce. The means that many log messages are by default not printed.
This includes the progress reports of supervisors. In order to get progress reports you need to raise the primary log
level toi nfo

$ erl -kernel logger level info

=PROGRESS REPORT==== 4-Nov-2019::16:33:11.742069 ===
application: kernel
started at: nonode@nohost

=PROGRESS REPORT==== 4-Nov-2019::16:33:11.746546 ===
application: stdlib
started at: nonode@nohost

Eshell V10.5.3 (abort with "G)

1>

28 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

1.4.3 Configure Logger formatter

In order to fit better into your existing logging infrastructure Logger can format its logging messages any way you
want to. Either you can use the built-in formatter, or you can build your own.

Single line configuration

Since single line logging is the default of the built-in formatter you only have to provide the empty map as the
configuration. The example below usesthe sys. conf i g to change the formatter configuration.

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ formatter => {logger formatter, #{ }}}}1}1}].

$ erl -config sys
Eshell V10.5.1 (abort with ~G)
1> logger:error("Oh noes, an error").
1962-10-03T11:07:47.466763-04:00 error: Oh noes, an error

However, if you just want to change it for the current session you can also do that.

1> logger:set handler config(default, formatter, {logger formatter, #{}}).
ok
2> logger:error("Oh noes, another error").
1962-10-04T15:34:02.648713-04:00 error: Oh noes, another error

See also

* logger_formatter's Configuration

e Formattersin the Logging User's Guide

e logger:set _handler_config/3

Add file and line number to log entries
Y ou can change what is printed to the log by using the formatter template:

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ formatter => {logger formatter,
#{ template => [time," ", file,":",line," ",level,": ",msg,"\n"] }}}}1}1}1.
$ erl -config sys
Eshell V10.5.1 (abort with ~G)
1> logger:error("0Oh noes, more errors",#{ file => "shell.erl", line => 1 }).
1962-10-05T07:37:44.104241+02:00 shell.erl:1 error: Oh noes, more errors

Note that file and line have to be added in the metadata by the caller of | ogger : | og/ 3 as otherwise Logger will
not know from where it was called. The file and line number are automatically added if you use the ?LOG_ERROR
macrosinker nel /i ncl ude/ | ogger. hrl .

See also

e logger_formatter's Configuration

* logger_formatter's Template

e Logger Macros

* Metadatain the Logging User's Guide

Ericsson AB. All Rights Reserved.: Kernel | 29

1.4 Logging Cookbook

1.4.4 Configuring handlers

Print logs to a file
Instead of printing the logs to stdout we print them to arotating file log.

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ config => #{ file => "log/erlang.log",
max_no_bytes => 4096,
max_no_files => 5},
formatter => {logger formatter, #{}}}}1}1}1.

$ erl -config sys

Eshell V10.5.1 (abort with ~G)

1> logger:error("Oh noes, even more errors").

ok

2> erlang:halt().

$ cat log/erlang.log

2019-10-07T11:47:16.837958+02:00 error: Oh noes, even more errors

See also
e logger_std h's Description
» Handlersinthe Logging User's Guide

Debug only handler

Add ahandler that prints debug log eventsto afile, while the default handler prints only upto not i ce level events
to standard out.

$ cat sys.config
[{kernel,
[{logger level, all},
{logger,
[{handler, default, logger std h,
#{ level => notice }},
{handler, debug, logger std h,
#{ filters => [{debug,{fun logger filters:level/2, {stop, neq, debug}}}I],
config => #{ file => "log/debug.log" } }}
131} 1.
$ erl -config sys
Eshell V10.5.1 (abort with "G)
1> logger:error("Oh noes, even more errors").

=ERROR REPORT==== 9-0ct-2019::14:40:54.784162 ===
Oh noes, even more errors

ok

2> logger:debug("A debug event").

ok

3> erlang:halt().
$ cat log/debug.log
2019-10-09T14:41:03.680541+02:00 debug: A debug event

In the configuration above we first raise the primary log level to max in order for the debug log events to get to the
handlers. Then we configure the default handler to only log notice and bel ow events, the default log level for ahandler
isal | . Then the debug handler is configured with afilter to stop any log message that is not a debug level message.

Itisalso possibleto do the same changesin an aready running systemusingthel ogger module. Thenyou dolikethis:

30 | Ericsson AB. All Rights Reserved.: Kernel

1.4 Logging Cookbook

$ erl

1> logger:set handler config(default, level, notice).

ok

2> logger:add handler(debug, logger std h, #{
filters => [{debug,{fun logger filters:level/2, {stop, neq, debug}}}1,
config => #{ file => "log/debug.log" } }).

ok

3> logger:set primary config(level, all).

ok

Itisimportant that you do not raise the primary log level before adjusting the default handler'slevel as otherwise your
standard out may be flooded by debug log messages.

See also

* logger_std h's Description

» Filtersin the Logging User's Guide

1.4.5 Logging
What to log and how

The simplest way to log something is by using the Logger macros and give areport to the macro. For exampleif you
want to log an error:

?7LOG_ERROR(#{ what => http error, status => 418, src => ClientIP, dst => ServerIP }).
Thiswill print the following in the default log:

=ERROR REPORT==== 10-0ct-2019::12:13:10.089073 ===
dst: {8,8,4,4}
src: {8,8,8,8}
status: 418
what: http error

or the below if you use asingle line formatter:
2019-10-10T12:14:11.921843+02:00 error: dst: {8,8,4,4}, src: {8,8,8,8}, status: 418, what: http error

See also
e Log Message in the Logging User's Guide

Report call-backs and printing of events

If you want to do structured logging, but still want to have some control of how the final log message isformatted you
cangivear eport _cb aspart of the metadata with your log event.

ReportCB = fun(#{ what := What, status := Status, src := Src, dst := Dst }) ->
{ok, #hostent{ h _name = SrcName }} inet:gethostbyaddr(Src),
{ok, #hostent{ h_name = DstName }} inet:gethostbyaddr(Dst),

{"What: ~p~nStatus: ~p~nSrc: ~s (~s)~nDst: ~s (~s)~n",
[What, Status, inet:ntoa(Src), SrcName, inet:ntoa(Dst), DstName]}

end,
?LOG_ERROR(#{ what => http error, status => 418, src => ClientIP, dst => ServerIP },
#{ report cb => ReportCB }).

Thiswill print the following:

Ericsson AB. All Rights Reserved.: Kernel | 31

1.4 Logging Cookbook

=ERROR REPORT==== 10-0ct-2019::13:29:02.230863 ===
What: http error

Status: 418

Src: 8.8.8.8 (dns.google)

Dst: 192.121.151.106 (erlang.org)

Note that the order that things are printed have changed, and also | added a reverse-dns lookup of the |P address. This
will not print as nicely when using asingle line formatter, however you can also use areport_cb fun with 2 arguments
where the second argument is the formatting options.

See also
* Log Message in the Logging User's Guide
* Logger Report Callbacks

1.4.6 Filters

Filters are used to remove or change log events before they reach the handlers.

Process filters

If we only want debug messages from a specific processit is possible to do this with afilter like this:

%% Initial setup to use a filter for the level filter instead of the primary level
PrimaryLevel = maps:get(level, logger:get primary config()),
ok = logger:add primary filter(primary level,
{fun logger filters:level/2, {log, gteq, PrimaryLevel}}),
logger:set primary config(filter default, stop),
logger:set primary config(level, all),

%% Test that things work as they should
logger:notice("Notice should be logged"),
logger:debug("Should not be logged"),

%% Add the filter to allow PidToLog to send debug events

PidToLog = self(),

PidFilter = fun(LogEvent,) when PidTolLog =:= self() -> LogEvent;
(_LogEvent,) -> ignore end,

ok = logger:add primary filter(pid, {PidFilter,[]}),

logger:debug("Debug should be logged").

There is abit of setup needed to alow filters to decide whether a specific process should be allowed to log. Thisis
because the default primary log level is notice and it is enforced before the primary filters. So in order for the pid filter
to be useful we have to raise the primary log level to al | and then add aleve filter that only lets certain messages at
or greater than notice through. When the setup is done, it is simple to add afilter that allows a certain pid through.

Note that doing the primary log level filtering through afilter and not through the level is quite alot more expensive,
so make sure to test that your system can handle the extra load before you enable it on a production node.

See also

» Filtersin the Logging User's Guide

e Jlogger filters:level/2

e logger:set primary config/2

Domains

Domains are used to specify which subsystem a certain log event originates from. The default handler will by default
only log events with the domain [ot p] or without a domain. If you would like to include SSL log events into the
default handler log you could do this:

32 | Ericsson AB. All Rights Reserved.: Kernel

1.5 EEP-48: Documentation storage and format

1> logger:add handler filter(default,ssl domain,
{fun logger filters:domain/2,{log,sub, [otp,ssl]}}).
2> application:ensure all started(ssl).
{ok, [crypto,asnl,public_key,ssl]}
3> ssl:connect("www.erlang.org",443, [{log level,debug}]).
%% lots of text

See also

» Filtersin the Logging User's Guide

e Jlogger filters:donain/2

e logger:set _prinmary _config/2

1.5 EEP-48: Documentation storage and format

This User's Guide describes the documentation storage format initially described in EEP-48. By standardizing how
API documentation is stored, it will be possible to write tools that work across languages.

To fetch the EEP-48 documentation for amodule you can use code: get _doc/ 1.
To render the EEP-48 documentation for an Erlang module you canuseshel | _docs: render/ 2.

1.5.1 the "Docs" storage
To look for documentation for a module name example, atool should:

Look for exanpl e. beamin the code path, parse the BEAM file and retrieve the Docs chunk. If the chunk is not
available, it should look for "example.beam" in the code path and find the doc/ chunks/ exanpl e. chunk filein
the application that definestheexanpl e module. If a.chunk fileisnot avail able, then documentation isnot available.

The choice of using a chunk or the filesystem is completely up to the language or library. In both cases, the
documentation can be added or removed at any moment by stripping the Docs chunk or by removing the doc/chunks
directory.

For example, languages like Elixir and LFE attach the Docs chunk at compilation time, which can be controlled via
a compiler flag. On the other hand, projects like OTP itself will likely generate the doc/chunks entries on a separate
command, completely unrelated from code compilation.

1.5.2 the "Docs" format

In both storages, the documentation is written in the exactly same format: an Erlang term serialized to binary via
term t o_bi nary/ 1. Theterm may be optionally compressed when serialized. It must follow the type specification
below:

{docs v1,

Anno :: erl _anno:anno(),

BeamLanguage :: atom(),

Format :: binary(),

ModuleDoc :: #{DocLanguage := DocValue} | none | hidden,
Metadata :: map(),

Docs ::

[{{Kind, Name, Arity},
Anno :: erl _anno:anno(),
Signature :: [binary()],
Doc :: #{DocLanguage :=
Metadata :: map()

}1} when DoclLanguage :: binary(),

DocValue :: binary() | term()

DocValue} | none | hidden,

where in the root tuple we have:

Ericsson AB. All Rights Reserved.: Kernel | 33

href

1.5 EEP-48: Documentation storage and format

Anno

annotation (line, column, file) of the definition itself (seeer | _anno(3))
BeamLanguage

an atom representing the language, for example: erlang, elixir, Ife, apaca, etc
Format

the mime type of the documentation, such as <<"text/markdown">> or <<"application/erlang+html">>. For
details of the format used by Erlang see the EEP- 48 Chapt er in Erl_Docgen's User's Guide.
ModuleDoc
amap with the documentation language as key, such as<<" en" >> or <<" pt _BR" >>, and the documentation
asabinary vaue. It may be the atom none in case there is ho documentation or the atom hi dden if
documentation has been explicitly disabled for this entry.
Metadata
amap of atom keys with any term as value. This can be used to add annotations like the aut hor s of a
module, depr ecat ed, or anything else alanguage or documentation tool may find relevant.
Docs
alist of documentation for other entities (such as functions and types) in the module.

For each entry in Docs, we have:

{Kind, Name, Arity}
the kind, name and arity identifying the function, callback, type, etc. The official entitiesare: f unct i on,
type and cal | back. Other languages will add their own. For instance, Elixir and LFE may add macro.
Anno
annotation (line, column, file) of the module documentation or of the definition itself (seeer | _anno(3)).
Signature
the signature of the entity. It isisalist of binaries. Each entry represents a binary in the signature that
can be joined with awhitespace or anewline. For example, [<<" bi nary_t o_at on(Bi nary,
Encodi ng) " >>, <<"when is_binary(Bi nary)">>] may berendered asasingleline or two lines.
It exists exclusively for exhibition purposes.
Doc
amap with the documentation language as key, such as <<"en">> or <<"pt_BR">>, and the documentation
as avalue. The documentation may either be abinary or any Erlang term, both described by For mat . If itis
an Erlang term, then the Format must be <<"application/erlang+SUFFI X" ,>> such as <<"application/erlang
+html">> when the documentation is an Erlang representation of an HTML document. The Doc may also
be atom none in case there is no documentation or the atom hi dden if documentation has been explicitly
disabled for this entry.
Metadata
amap of atom keys with any term asvalue.

This shared format is the heart of the EEP asiit is what effectively allows cross-language collaboration.

The Metadata field exists to alow languages, tools and libraries to add custom information to each entry. This EEP
documents the following metadata keys:

authors := [binary()]
alist of authors as binaries.
cross _references := [module() | { module(), {Kind, Name, Arity}}]
alist of modules or module entries that can be used as cross references when generating documentation.
deprecated := binary()
when present, it means the current entry is deprecated with a binary that represents the reason for deprecation
and a recommendation to replace the deprecated code.
since := binary()
abinary representing the version such entry was added, such as <<"1.3.0">> or <<"20.0">>.
edit_url := binary()
abinary representing a URL to change to change the documentation itself.

34 | Ericsson AB. All Rights Reserved.: Kernel

1.5 EEP-48: Documentation storage and format

Any key may be added to Metadata at any time. Keys that are frequently used by the community can be standardized
in future versions.

1.5.3 See Also

erl _anno(3), shell _docs(3), EEP-48 Chapter in Erl_Docgen's User's Cuide,
code: get _doc/1

Ericsson AB. All Rights Reserved.: Kernel | 35

1.5 EEP-48: Documentation storage and format

2 Reference Manual

36 | Ericsson AB. All Rights Reserved.: Kernel

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

* Globa name service

e Supervision of Erlang/OTP

e Communication with sockets

e Operating system interface

Logger Handlers
Two standard logger handlers are defined in the Kernel application. These are described in the Kernel User's Guide,
andinthel ogger _std_h(3) andl ogger _di sk_I og_h(3) manual pages.

OS Signal Event Handler

Asynchronous OS signals may be subscribed to viathe Kernel applications event manager (see OTP Design Principles
andgen_event (3)) registeredaser | _si gnal _ser ver . A default signal handler isinstalled which handlesthe
following signals:

sigusrl

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalentto callinger | ang: hal t (" Recei ved SI GUSR1").

sigquit
The default handler will halt Erlang immediately. Thisis equivalent to callinger | ang: hal t () .
sigterm

The default handler will terminate Erlang normally. Thisis equivalent to callingi ni t: st op() .

Events
Any event handler added to er | _si gnal _ser ver must handle the following events.
si ghup
Hangup detected on controlling terminal or death of controlling process
si gquit
Quit from keyboard
si gabrt
Abort signal from abort
sigalrm

Timer signal from alarm

Ericsson AB. All Rights Reserved.: Kernel | 37

kernel

sigterm
Termination signal
sigusrl
User-defined signal 1
si gusr2
User-defined signal 2
sigchld
Child process stopped or terminated
si gstop
Stop process
sigtstp
Stop typed at terminal
Setting OS signals are described in 0s: set _si gnal / 2.

Configuration

The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, seefileapp(4) .

distributed = [Distrib]
Specifieswhich applicationsthat are distributed and on which nodesthey are allowed to execute. In thisparameter:
e Distrib = {App, Nodes} | {App, Ti me, Nodes}

* App = aton()
« Time = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed inappl i cati on: | oad/ 2.
di st _aut o_connect = Val ue

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never
Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3).
once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. Seenet _ker nel (3).

di st _listen = bool ean()

Specifies whether this node should be listening for incoming distribution connections. Using this option implies
that the node alsois- hi dden.

perm ssions = [Perni
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }
e Appl Nane = atom()

38 | Ericsson AB. All Rights Reserved.: Kernel

kernel

e Bool = bool ean()
Permissions are described inappl i cati on: perm t/ 2.
| ogger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger | evel ,
and the compatibility with SASL Error Logging, which is specified with| ogger _sasl _conpati bl e.

Thel ogger parameter isdescribed in section Logging in the Kernel User's Guide.
| ogger _| evel = Level

Specifies the primary log level for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the Kernel User's Guide for more information about Logger and

log levels.
Level = energency | alert | critical | error | warning | notice | info |
debug | all | none

To change the primary log level at runtime, usel ogger: set _primary_confi g(l evel, Level).
Defaultstonot i ce.
| ogger _sasl _conpatible = true | false

Specifiesif Logger behaves backwards compatible with the SASL error logging functionality from releases prior
to Erlang/OTP 21.0.

If this parameter is set to t r ue, the default Logger handler does not log any progress-, crash-, or supervisor
reports. If the SASL application is then started, it adds a Logger handler named sasl , which logs these events
according to values of the SASL configuration parameter sasl _error _| ogger andsasl _errl og_type.

See section Deprecated Error Logger Event Handlersand Configurationinthe sasl(6) manual pagefor information
about the SASL configuration parameters.

See section SASL Error Logging in the SASL User's Guide, and section Backwards Compatibility with
error_logger in the Kernel User's Guide for information about the SASL error logging functionality, and how
Logger can be backwards compatible with this.

Defaultstof al se.

If this parameter issettot r ue, sasl _errl og_t ype indicates that progress reports shall be logged, and
the configured primary log level isnot i ce or more severe, then SASL automatically sets the primary log
level toi nf 0. That is, this setting can potentially overwrite the value of the Kernel configuration parameter
| ogger _| evel . Thisis to allow progress reports, which have log level i nf o, to be forwarded to the
handlers.

gl obal _groups = [G oupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:
e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupNanme = atom()
e PublishType = normal | hidden
* Node = node()
i net_default_connect _options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .

Ericsson AB. All Rights Reserved.: Kernel | 39

kernel

inet_default _listen_options = [{Opt, Val}]
Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .
{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess() , seei net (3).

{inet _dist listen mn, First} and{inet _dist _|isten_nmax, Last}
Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet_dist_listen_options, Opts}

Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/2.

{inet_dist_connect_options, Opts}

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_tcp: connect/ 4.

i net_parse_error_log = silent
If set, no log events are issued when erroneous lines are found and skipped in the various Inet configuration files.
inetrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gurati on inthe
ERTS User's Guide.

net _setuptime = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net _tickintensity = NetTicklntensity

Net tick intensity specifies how many ticks to send during a net tick time period when no other data is sent
over a connection to another node. This also determines how often to check for data from the other node. The
higher net tick intensity, the closer to the chosen net tick time period the node will detect an unresponsive node.
The net tick intensity defaults to 4. The value of Net Ti ckl nt ensi ty should be an integer in the range
4..1000. If the Net Ti ckl nt ensi ty isnot an integer or an integer less than 4, 4 will silently be used. If
Net Ti ckl nt ensi ty isan integer larger than 1000, 1000 will silently be used.

Note that al communicating nodes are expected to use the same net tick intensity as well as the same net
tick time.

Be careful not to set a too high net tick intensity, since you can overwhelm the node with work if it is set
too high.

40 | Ericsson AB. All Rights Reserved.: Kernel

kernel

net _ticktine = NetTickTine

Specifies the net tick time in seconds. This is the approximate time a connected node may be unresponsive until
it is considered down and thereby disconnected.

Net tick time together with net tick intensity determines an interval Ti ckl nterval = Net Ti ckTi ne/
Net Ti ckl nt ensi ty. Once every Ti ckl nt er val seconds, each connected node is ticked if nothing has
been sent to it during that last Ti ckl nt er val seconds. A tick is a small package sent on the connection. A
connected node is considered to be down if no ticks or payload packages have been received during the last
Net Ti ckl nt ensi ty number of Ti ckl nt er val seconds intervals. This ensures that nodes that are not
responding, for reasons such as hardware errors, are considered to be down.

As the availability is only checked every Ti ckl nt er val seconds, the actual time T a node have been
unresponsive when detected may vary between M nT and MaxT, where:

MinT
MaxT

NetTickTime - NetTickTime / NetTickIntensity
NetTickTime + NetTickTime / NetTickIntensity

Net Ti ckTi me defaultsto 60 secondsand Net Ti ckl nt ensi t y defaultsto4. Thus, 45 < T < 75 seconds.

Noticethat all communicating nodesareto havethesameNet Ti ckTi me andNet Ti ckl nt ensi t y values
specified, as it determines both the frequency of outgoing ticks and the expected frequency of incominging
ticks.

Net Ti ckTime needs to be a multiple of NetTicklntensity. |If the configured
values are not, Net Ti ckTine will internally be rounded up to the nearest millisecond.
net _kernel : get_net_ticktime() will, however, report net tick time truncated to the nearest second.

Normally, aterminating node is detected immediately by the transport protocol (like TCP/IP).
prevent _overl appi ng_partitions = true | false

If enabled (t r ue), gl obal will actively prevent overlapping partitions from forming when connections are lost
between nodes. Thisfix is, however, currently disabled by default. Seethegl obal (3) documentation for more
information.

shutdown_tinmeout = integer() | infinity

Specifiesthetimeappl i cati on_contr ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutaly killsappl i cati on_mast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_opti onal = [NodeNane]

Specifies which other nodesthat can be alivefor this nodeto start properly. If some nodein thislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes_tinmeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter isundefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

Ericsson AB. All Rights Reserved.: Kernel | 41

kernel

start_distribution = true | false

Starts al distribution services, such as r pc, gl obal , and net _ker nel if the parameter is true. This
parameter isto be set to f al se for systems who want to disable all distribution functionality.

Defaultstot r ue.
start_dist_ac = true | false

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start_boot _server = true | fal se

Startstheboot _ser ver if the parameterist r ue (seeer| _boot _server (3)). This parameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot server_slaves = [Sl avel P

If configuration parameter start boot server is true, this parameter can be used to initialize
boot server withalist of slave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.
Examples of Sl avel Pinatom, string, and tuple form:
' 150. 236. 16. 70', "150, 236, 16, 70", {150, 236, 16, 70}.
Defaultsto[] .
start _disk log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_I og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.
start_pg = true | false

Starts the default pg scope server (see pg(3)) if the parameter ist r ue. This parameter istobe settot r ue
in an embedded system that uses this service.

Defaultstof al se.
start_pg2 = true | false

Startsthepg?2 server (seepg2(3)) if the parameter ist r ue. Thisparameteristobesettot r ue in an embedded
system that uses this service.

Defaultstof al se.
start _timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobesettotr ue in
an embedded system using this service.

Defaultstof al se.
shel |l _history = enabled | disabled
Specifies whether shell history should be logged to disk between usagesof er | .

42 | Ericsson AB. All Rights Reserved.: Kernel

kernel

shel | _history_drop = [string()]

Specific log lines that should not be persisted. For example["q().", "init:stop()."] will alow to
ignore commands that shut the node down. Defaultsto[] .

shel |l _history file_bytes = integer()
How many bytesthe shell should remember. By default, the valueis set to 512kb, and the minimal value is 50kb.
shel |l _history path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
fil enane: basedi r(user_cache, "erlang-history").

shut down_func = {Md, Func}
Where:
e Md = atom()
e Func = atom()
Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as

Mod: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

source_search_rules = [DirRule] | [SuffixRule]
Where:
e DirRule = {ObjDirsuffix, SrcDirSuffix}
o SuffixRule = {Obj Suffix, SrcSuffix,[DirRule]}
e bjDirsuffix = string()
e SrcDirSuffix = string()
e ObjSuffix = string()
e SrcSuffix = string()
Specifies alist of rulesfor useby filelib:find file/2filelib:find source/?2 If thisissetto
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
suchas{"ebin", "src"},whichareusedbyfilelib:find filel2,ortriplesspecifying separate

directory suffix rules depending on file name extensions, for example[{" . beant, ".erl", [{"ebin",
"src"}]},whichareusedbyfilelib:find source/2.Bothkindsof rulescan be mixed inthelist.

The interpretation of Cbj Di r Suf fi x and SrcDi r Suf fi x is as follows: if the end of the directory name
where an object islocated matches Cbj Di r Suf f i x, then the name created by replacing Qbj Di r Suf f i x with
SrcDi r Suffix isexpanded by calingfil el i b: wi | dcard/ 1, and thefirst regular file found among the
matchesis the sourcefile.

Deprecated Configuration Parameters

In Erlang/OTP 21.0, anew API for logging was added. Theold er r or _| ogger event manager, and event handlers
running on this manager, still work, but they are no longer used by default.

The following application configuration parameters can still be set, but they are only used if the corresponding
configuration parameters for Logger are not set.

error_| ogger
Replaced by setting thet ype, and possibly f i | e and nodes parameters of the default | ogger _std_h
handler. Example:

erl -kernel logger '[{handler,default,logger std h,#{config=>#{file=>"/tmp/erlang.log"}}}]"

Ericsson AB. All Rights Reserved.: Kernel | 43

kernel

error _| ogger _format_depth
Replaced by setting the dept h parameter of the default handlers formatter. Example:

erl -kernel logger '[{handler,default,logger std h,#{formatter=>{logger formatter,#{legacy header=>true, ter

See Backwards compatibility with error_logger for more information.

See Also

app(4), application(3), code(3), disk log(3), erl_boot_server(3), erl_ddll(3),
file(3), global (3), gl obal _group(3), heart(3), inet(3), | ogger(3), net_kernel (3),
0s(3),pg(3),pg2(3),rpc(3),seq_trace(3),user(3),tiner(3)

44 | Ericsson AB. All Rights Reserved.: Kernel

app

app

Name

The application resour ce file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Appl i cat i on. app for each application Appl i cati on in
the system.

The fileisread by the application controller when an application is loaded/started. It is also used by the functionsin
syst ool s, for example when generating start scripts.
File Syntax

The application resource file is to be called Appl i cat i on. app, where Appl i cat i on is the application name.
Thefileisto belocated in directory ebi n for the application.

The file must contain a single Erlang term, which is called an application specification:

{application, Application,

[{description, Description},
{id, Id},

{vsn, Vsn},
{modules, Modules},
{maxP, MaxP},

{maxT, MaxT},
{registered, Names},

{included applications, Apps},
{applications, Apps},

{env, Env},

{mod, Start},

{start phases, Phases},

{runtime dependencies, RTDeps}]}.

Value Default
Application atom() -
Description string() "
Id string() "
Vsn string() "
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] [
Apps [Appl] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArg