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Abstract

This document describes design decisions, and dis-
cusses implementation and algorithmic details in
some vegan functions. The proper FAQ is another
document.
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1 Nestedness and Null models

Some published indices of nestedness and null mod-
els of communities are only described in general
terms, and they could be implemented in various
ways. Here I discuss the implementation in vegan.

1.1 Matrix temperature

The matrix temperature is intuitively simple (Fig.
1.1), but the the exact calculations were not ex-
plained in the original publication (Atmar and
Patterson, 1993). The function can be imple-
mented in many ways following the general prin-
ciples. Rodŕıguez-Gironés and Santamaria (2006)
have seen the original code and reveal more details
of calculations, and their explanation is the basis of

the implementation in vegan. However, there are
still some open issues, and probably vegan func-
tion nestedtemp will never exactly reproduce re-
sults from other programs, although it is based on
the same general principles.1 I try to give main
computation details in this document — all details
can be seen in the source code of nestedtemp.

• Species and sites are put into unit square
(Rodŕıguez-Gironés and Santamaria, 2006).
The row and column coordinates will be (k −
0.5)/n for k = 1 . . . n, so that there are no
points in the corners or the margins of the
unit square, and a diagonal line can be drawn
through any point. I do not know how the rows
and columns are converted to the unit square
in other software, and this may be a consider-
able source of differences among implementa-
tions.

• Species and sites are ordered alternately using
indices (Rodŕıguez-Gironés and Santamaria,
2006):

sj =
∑

i|xij=1

i2

tj =
∑

i|xij=0

(n− i+ 1)2
(1)

Here x is the data matrix, where 1 is pres-
ence, and 0 is absence, i and j are row and
column indices, and n is the number of rows.
The equations give the indices for columns, but
the indices can be reversed for corresponding
row indexing. Ordering by s packs presences
to the top left corner, and ordering by t pack

1function nestedness in the bipartite package is a direct
port of the original BINMATNEST program of Rodŕıguez-
Gironés and Santamaria (2006).
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Figure 1: Matrix temperature for Falco subbuteo on
Sibbo Svartholmen (dot). The curve is the fill line,
and in a cold matrix, all presences (red squares)
should be in the upper left corner behind the fill
line. Dashed diagonal line of length D goes through
the point, and an arrow of length d connects the
point to the fill line. The “surprise” for this point
is u = (d/D)2 and the matrix temperature is based
on the sum of surprises: presences outside the fill
line or absences within the fill line.

zeros away from the top left corner. The final
sorting should be “a compromise” (Rodŕıguez-
Gironés and Santamaria, 2006) between these
scores, and vegan uses s+t. The result should
be cool, but the packing does not try to mini-
mize the temperature (Rodŕıguez-Gironés and
Santamaria, 2006). I do not know how the
“compromise” is defined, and this can cause
some differences to other implementations.

• The following function is used to define the fill
line:

y = (1− (1− x)p)1/p (2)

This is similar to the equation suggested by
Rodŕıguez-Gironés and Santamaria (2006, eq.
4), but omits all terms dependent on the num-
bers of species or sites, because I could not
understand why they were needed. The dif-

ferences are visible only in small data sets.
The y and x are the coordinates in the unit
square, and the parameter p is selected so
that the curve covers the same area as is the
proportion of presences (Fig. 1.1). The pa-
rameter p is found numerically using R func-
tions integrate and uniroot. The fill line
used in the original matrix temperature soft-
ware (Atmar and Patterson, 1993) is supposed
to be similar (Rodŕıguez-Gironés and Santa-
maria, 2006). Small details in the fill line com-
bined with differences in scores used in the unit
square (especially in the corners) can cause
large differences in the results.

• A line with slope = −1 is drawn through the
point and the x coordinate of the intersection
of this line and the fill line is found using func-
tion uniroot. The difference of this intersec-
tion and the row coordinate gives the argument
d of matrix temperature (Fig. 1.1).

• In other software, “duplicated” species occur-
ring on every site are removed, as well as empty
sites and species after reordering (Rodŕıguez-
Gironés and Santamaria, 2006). This is not
done in vegan.

1.2 Backtracking

Gotelli’s and Entsminger’s seminal paper (Gotelli
and Entsminger, 2001) on filling algorithms is
somewhat confusing: it explicitly deals with
“knight’s tour” which is quite a different problem
than the one we face with null models. The chess
piece “knight”2 has a history: a piece in a certain
position could only have entered from some candi-
date squares. The filling of incidence matrix has no
history: if we know that the item last added was
in certain row and column, we have no information
to guess which of the filled items was entered pre-
viously. A consequence of dealing with a different
problem is that Gotelli and Entsminger (2001) do
not give many hints on implementing a fill algo-
rithm as a community null model.

The backtracking is implemented in two stages
in vegan: filling and backtracking.

2“Knight” is “Springer” in German which is very appro-
priate as Springer was the publisher of the paper on“knight’s
tour”
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1. The matrix is filled in the order given by the
marginal probabilities. In this way the ma-
trix will look similar to the final matrix at all
stages of filling. Equal filling probabilities are
not used since that is ineffective and produces
strange fill patterns: the rows and columns
with one or a couple of presences are filled
first, and the process is cornered to columns
and rows with many presences. As a conse-
quence, the the process tries harder to fill that
corner, and the result is a more tightly packed
quadratic fill pattern than with other methods.

2. The filling stage stops when no new points
can be added without exceeding row or col-
umn totals. “Backtracking” means removing
random points and seeing if this allows adding
new points to the plot. No record of history is
kept (and there is no reason to keep a record of
history), but random points are removed and
filled again. The number of removed points in-
creases from one to four points. New configu-
ration is kept if it is at least as good as the pre-
vious one, and the number of removed points
is reduced back to one if the new configuration
is better than the old one. Because there is
no record of history, this does not sound like a
backtracking, but it still fits the general defi-
nition of backtracking: “try something, and if
it fails, try something else” (Sedgewick, 1990).

2 Scaling in redundancy anal-
ysis

This chapter discusses the scaling of scores (results)
in redundancy analysis and principal component
analysis performed by function rda in the vegan
library.

Principal component analysis, and hence redun-
dancy analysis, is a case of singular value decompo-
sition (svd). Functions rda and prcomp even use
svd internally in their algorithm.

In svd a centred data matrix X = {xij} is
decomposed into orthogonal components so that
xij =

∑
k σkuikvjk, where uik and vjk are orthonor-

mal coefficient matrices and σk are singular val-
ues. Orthonormality means that sums of squared
columns is one and their cross-product is zero, or∑

i u
2
ik =

∑
j v

2
jk = 1, and

∑
i uikuil =

∑
j vjkvjl =

0 for k 6= l. This is a decomposition, and the orig-
inal matrix is found exactly from the singular vec-
tors and corresponding singular values, and first
two singular components give the rank = 2 least
squares estimate of the original matrix.

Principal component analysis is often presented
(and performed in legacy software) as an eigenanal-
ysis of covariance matrices. Instead of a data ma-
trix, we analyse a matrix of covariances and vari-
ances S. The result are orthonormal coefficient ma-
trix U and eigenvalues Λ. The coefficients uik ares
identical to svd (except for possible sign changes),
and eigenvalues λk are related to the corresponding
singular values by λk = σ2

k/(n − 1). With classi-
cal definitions, the sum of all eigenvalues equals the
sum of variances of species, or

∑
k λk =

∑
j s

2
j , and

it is often said that first axes explain a certain pro-
portion of total variance in the data. The orthonor-
mal matrix V of svd can be found indirectly as
well, so that we have the same components in both
methods.

The coefficients uik and vjk are scaled to unit
length for all axes k. Singular values σk or eigen-
values λk give the information of the importance
of axes, or the ‘axis lengths.’ Instead of the or-
thonormal coefficients, or equal length axes, it is
customary to scale species (column) or site (row)
scores or both by eigenvalues to display the impor-
tance of axes and to describe the true configuration
of points. Table 1 shows some alternative scalings.
These alternatives apply to principal components
analysis in all cases, and in redundancy analysis,
they apply to species scores and constraints or lin-
ear combination scores; weighted averaging scores
have somewhat wider dispersion.

In community ecology, it is common to plot both
species and sites in the same graph. If this graph
is a graphical display of svd, or a graphical, low-
dimensional approximation of the data, the graph
is called a biplot. The graph is a biplot if the trans-
formed scores satisfy xij = c

∑
k u
∗
ijv
∗
jk where c is

a scaling constant. In functions princomp, prcomp
and rda, c = 1 and the plotted scores are a bi-
plot so that the singular values (or eigenvalues) are
expressed for sites, and species are left unscaled.

There is no natural way of scaling species and
site scores to each other. The eigenvalues in redun-
dancy and principal components analysis are scale-
dependent and change when the data are multiplied
by a constant. If we have percent cover data, the
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Table 1: Alternative scalings for rda used in the functions prcomp and princomp, and the one used
in the vegan function rda and the proprietary software Canoco scores in terms of orthonormal species
(uik) and site scores (vjk), eigenvalues (λk), number of sites (n) and species standard deviations (sj). In

rda, const = 4
√

(n− 1)
∑
λk. Corresponding negative scaling in vegan is derived dividing each species

by its standard deviation sj (possibly with some additional constant multiplier).

Site scores u∗ik Species scores v∗jk

prcomp, princomp uik
√
n− 1

√
λk vjk

rda, scaling=1 uik
√
λk/

∑
λk × const vjk × const

rda, scaling=2 uik × const vjk
√
λk/

∑
λk × const

rda, scaling=3 uik
4
√
λk/

∑
λk × const vjk

4
√
λk/

∑
λk × const

rda, scaling < 0 u∗ik
√∑

λk/(n− 1)s−1j v∗jk

eigenvalues are typically very high, and the scores
scaled by eigenvalues will have much wider disper-
sion than the orthonormal set. If we express the
percentages as proportions, and divide the matrix
by 100, the eigenvalues will be reduced by factor
1002, and the scores scaled by eigenvalues will have
a narrower dispersion. For graphical biplots we
should be able to fix the relations of row and col-
umn scores to be invariant against scaling of data.
The solution in R standard function biplot is to
scale site and species scores independently, and typ-
ically very differently, but plot each independently
to fill the graph area. The solution in Canoco and
rda is to use proportional eigenvalues λk/

∑
λk in-

stead of original eigenvalues. These proportions
are invariant with scale changes, and typically they
have a nice range for plotting two data sets in the
same graph.

The vegan package uses a scaling constant c =
4
√

(n− 1)
∑
λk in order to be able to use scaling by

proportional eigenvalues (like in Canoco) and still
be able to have a biplot scaling. Because of this,
the scaling of rda scores is non-standard. However,
the scores function lets you to set the scaling con-
stant to any desired values. It is also possible to
have two separate scaling constants: the first for
the species, and the second for sites and friends,
and this allows getting scores of other software or
R functions (Table 2).

In this chapter, I used always centred data ma-
trices. In principle svd could be done with orig-
inal, non-centred data, but there is no option for
this in rda, because I think that non-centred anal-
ysis is dubious and I do not want to encourage its

use (if you think you need it, you are certainly so
good in programming that you can change that one
line in rda.default). I do think that the argu-
ments for non-centred analysis are often twisted,
and the method is not very good for its intended
purpose, but there are better methods for finding
fuzzy classes. Normal, centred analysis moves the
origin to the average of all species, and the dimen-
sions describe differences from this average. Non-
centred analysis leaves the origin in the empty site
with no species, and the first axis usually runs from
the empty site to the average site. Second and third
non-centred components are often very similar to
first and second (etc.) centred components, and the
best way to use non-centred analysis is to discard
the first component and use only the rest. This is
better done with directly centred analysis.

3 Weighted average and linear
combination scores

Constrained ordination methods such as Con-
strained Correspondence Analysis (CCA) and Re-
dundancy Analysis (RDA) produce two kind of site
scores (ter Braak, 1986; Palmer, 1993):

• LC or Linear Combination Scores which are
linear combinations of constraining variables.

• WA or Weighted Averages Scores which are
such weighted averages of species scores that
are as similar to LC scores as possible.
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Table 2: Values of the const argument in vegan to get the scores that are equal to those from other
functions and software. Number of sites (rows) is n, the number of species (columns) is m, and the sum
of all eigenvalues is

∑
k λk (this is saved as the item tot.chi in the rda result)

.

Scaling Species constant Site constant

vegan any 4
√

(n− 1)
∑
λk

4
√

(n− 1)
∑
λk

prcomp, princomp 1 1
√

(n− 1)
∑

k λk
Canoco v3 -1, -2, -3

√
n− 1

√
n

Canoco v4 -1, -2, -3
√
m

√
n

Many computer programs for constrained ordina-
tions give only or primarily LC scores following
recommendation of Palmer (1993). However, func-
tions cca and rda in the vegan package use primar-
ily WA scores. This chapter explains the reasons for
this choice.

Briefly, the main reasons are that

• LC scores are linear combinations, so they
give us only the (scaled) environmental vari-
ables. This means that they are independent
of vegetation and cannot be found from the
species composition. Moreover, identical com-
binations of environmental variables give iden-
tical LC scores irrespective of vegetation.

• McCune (1997) has demonstrated that noisy
environmental variables result in deteriorated
LC scores whereas WA scores tolerate some
errors in environmental variables. All environ-
mental measurements contain some errors, and
therefore it is safer to use WA scores.

This article studies mainly the first point. The
users of vegan have a choice of either LC or WA
(default) scores, but after reading this article, I be-
lieve that most of them do not want to use LC
scores, because they are not what they were look-
ing for in ordination.

3.1 LC Scores are Linear Combina-
tions

Let us perform a simple CCA analysis using only
two environmental variables so that we can see the
constrained solution completely in two dimensions:

> library(vegan)

> data(varespec)
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Figure 2: LC scores in CCA of the original data.

> data(varechem)

> orig <- cca(varespec ~ Al + K, varechem)

Function cca in vegan uses WA scores as default.
So we must specifically ask for LC scores (Fig. 2).

> plot(orig, dis=c("lc","bp"))

What would happen to linear combinations of LC
scores if we shuffle the ordering of sites in species
data? Function sample() below shuffles the in-
dices.

> i <- sample(nrow(varespec))

> shuff <- cca(varespec[i,] ~ Al + K, varechem)

It seems that site scores are fairly similar, but ori-
ented differently (Fig. 3). We can use Procrustes
rotation to see how similar the site scores indeed
are (Fig. 4).
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Figure 3: LC scores of shuffled species data.

> plot(procrustes(scores(orig, dis="lc"),

scores(shuff, dis="lc")))

There is a small difference, but this will disappear
if we use Redundancy Analysis (RDA) instead of
CCA (Fig. 5). Here we use a new shuffling as well.

> tmp1 <- rda(varespec ~ Al + K, varechem)

> i <- sample(nrow(varespec)) # Different shuffling

> tmp2 <- rda(varespec[i,] ~ Al + K, varechem)

LC scores indeed are linear combinations of con-
straints (environmental variables) and independent
of species data: You can shuffle your species data,
or change the data completely, but the LC scores
will be unchanged in RDA. In CCA the LC scores
are weighted linear combinations with site totals
of species data as weights. Shuffling species data
in CCA changes the weights, and this can cause
changes in LC scores. The magnitude of changes
depends on the variability of site totals.

The original data and shuffled data differ in their
goodness of fit:

> orig

Call: cca(formula = varespec ~ Al + K, data =

varechem)

Inertia Proportion Rank

Total 2.0832 1.0000

Constrained 0.4760 0.2285 2

Unconstrained 1.6072 0.7715 21
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Figure 4: Procrustes rotation of LC scores from
CCA of original and shuffled data.
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Figure 5: Procrustes rotation of LC scores in RDA
of the original and shuffled data.
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Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2

0.3608 0.1152

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6

0.37476 0.24036 0.19696 0.17818 0.15209 0.11840

CA7 CA8

0.08364 0.07567

(Showed only 8 of all 21 unconstrained eigenvalues)

> shuff

Call: cca(formula = varespec[i, ] ~ Al + K, data

= varechem)

Inertia Proportion Rank

Total 2.0832 1.0000

Constrained 0.1932 0.0927 2

Unconstrained 1.8900 0.9073 21

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2

0.1298 0.0634

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6

0.52408 0.31643 0.21958 0.17766 0.17696 0.11951

CA7 CA8

0.08447 0.07063

(Showed only 8 of all 21 unconstrained eigenvalues)

Similarly their WA scores will be (probably) very
different (Fig. 6).

The example used only two environmental vari-
ables so that we can easily plot all constrained
axes. With a larger number of environmental vari-
ables the full configuration remains similarly un-
changed, but its orientation may change, so that
two-dimensional projections look different. In the
full space, the differences should remain within nu-
merical accuracy:

> tmp1 <- rda(varespec ~ ., varechem)

> tmp2 <- rda(varespec[i,] ~ ., varechem)

> proc <- procrustes(scores(tmp1, dis="lc", choi=1:14),

scores(tmp2, dis="lc", choi=1:14))

> max(residuals(proc))

[1] 2.67932e-14

In cca the difference would be somewhat larger
than now observed 2.6793e-14 because site weights
used for environmental variables are shuffled with
the species data.
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Figure 6: Procrustes rotation of WA scores of CCA
with the original and shuffled data.

3.2 Factor constraints

It seems that users often get confused when they
perform constrained analysis using only one factor
(class variable) as constraint. The following exam-
ple uses the classical dune meadow data (Jongman
et al., 1987):

> data(dune)

> data(dune.env)

> orig <- cca(dune ~ Moisture, dune.env)

When the results are plotted using LC scores, sam-
ple plots fall only in four alternative positions (Fig.
7). In the previous chapter we saw that this hap-
pens because LC scores are the environmental vari-
ables, and they can be distinct only if the environ-
mental variables are distinct. However, normally
the user would like to see how well the environmen-
tal variables separate the vegetation, or inversely,
how we could use the vegetation to discriminate
the environmental conditions. For this purpose we
should plot WA scores, or LC scores and WA scores
together: The LC scores show where the site should
be, the WA scores shows where the site is.

Function ordispider adds line segments to con-
nect each WA score with the corresponding LC
(Fig. 8).
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Figure 7: LC scores of the dune meadow data using
only one factor as a constraint.

> plot(orig, display="wa", type="points")

> ordispider(orig, col="red")

> text(orig, dis="cn", col="blue")

This is the standard way of displaying results of
discriminant analysis, too. Moisture classes 1 and 2

seem to be overlapping, and cannot be completely
separated by their vegetation. Other classes are
more distinct, but there seems to be a clear arc
effect or a “horseshoe” despite using CCA.

3.3 Conclusion

LC scores are only the (weighted and scaled) con-
straints and independent of vegetation. If you plot
them, you plot only your environmental variables.
WA scores are based on vegetation data but are
constrained to be as similar to the LC scores as
only possible. Therefore vegan calls LC scores as
constraints and WA scores as site scores, and
uses primarily WA scores in plotting. However, the
user makes the ultimate choice, since both scores
are available.
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Figure 8: A “spider plot” connecting WA scores
to corresponding LC scores. The shorter the web
segments, the better the ordination.
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