Logo

statsmodels.discrete.discrete_model.Probit.hessian

Probit.hessian(params)[source]

Probit model Hessian matrix of the log-likelihood

Parameters:

params : array-like

The parameters of the model

Returns:

The Hessian evaluated at `params` :

Notes

\frac{\partial^{2}\ln L}{\partial\beta\partial\beta^{\prime}}=-\lambda_{i}\left(\lambda_{i}+x_{i}^{\prime}\beta\right)x_{i}x_{i}^{\prime}

where .. math:: lambda_{i}=frac{q_{i}phileft(q_{i}x_{i}^{prime}betaright)}{Phileft(q_{i}x_{i}^{prime}betaright)}

and q=2y-1

Previous topic

statsmodels.discrete.discrete_model.Probit.fit

Next topic

statsmodels.discrete.discrete_model.Probit.information

This Page